
NCS 362: Embedded Systems

Embedded Systems 

• Software Engineering. 

• C Programming



Introduction to Embedded Systems

• Cyber-Physical Systems is another name for embedded systems, introduced

in 2006 because these systems combine the intelligence of a computer with

the physical objects of our world.

• Component is very broad including software, hardware - digital hardware,

analog circuits, mechanical hardware, power supply and distribution,

sensors, and actuators.

• Behavior is embodied by the responses of its outputs to changes in its

inputs. Both time and state are important factors.

• Microcontrollers which are

microcomputers incorporating

the processor, RAM, ROM and I/O

ports into a single package, are often

employed in an embedded system

because of their low cost, small size,

and low power requirements.
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• How do we make software correct enough without 
going bankrupt?
– Need to be able to develop (and test) software 

efficiently

• Follow a good plan
– Start with customer requirements

– Design architectures to define the building blocks of the 
systems (tasks, modules, etc.)

– Add missing requirements

• Fault detection, management and logging

• Real-time issues

• Compliance to a firmware standards manual

• Fail-safes

Good Enough Software, Soon Enough
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• Follow a good plan (Cont…)

– Start with customer requirements

– Design architectures to define the building blocks of the systems (tasks, modules, etc.)

– Add missing requirements
• Fault detection, management and logging

• Real-time issues

• Compliance to a firmware standards manual

• Fail-safes

– Create detailed design

– Implement the code, following a good development process
• Perform frequent design and code reviews

• Perform frequent testing (unit and system testing, preferably automated)

• Use revision control to manage changes

– Perform post-mortems to improve development process

Good Enough Software, Soon Enough
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• We want a robust plan which considers likely risks

– What if the code turns out to be a lot more complex than we expected?

– What if there is a bug in our code (or a library)?

– What if the system doesn’t have enough memory or throughput?

– What if the system is too expensive?

– What if the lead developer quits?

– What if the lead developer is incompetent, lazy, or both (and won’t quit!)?

– What if the rest of the team gets sick?

– What if the customer adds new requirements?

– What if the customer wants the product two months early?

• Successful software engineering depends on balancing many factors, 

many of which are non-technical!

What happens when plan meets reality?
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• Plan to the work to accommodate risks

• Identify likely risks up front

– Historical problem areas

– New implementation technologies

– New product features

– New product line

• Severity of risk is combination of likelihood and impact of failure

Risk Reduction
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• Coding is the most visible part of a software development process but 
is not the only one

• Before we can code, we must know

– What must the code do? Requirements specification

– How will the code be structured? Design specification

• (only at this point can we start writing code)

• How will we know if the code works? Test plan

– Best performed when defining requirements

• The software will likely be enhanced over time - Extensive 
downstream modification and maintenance!

– Corrections, adaptations, enhancements & preventive maintenance

Software Lifecycle Concepts
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Product life Cycle

Done

 • Hardware

 • Software

 • Specifications

 • Constraints

Analyze

the

problem

Requirements
Design

Constraints

Testing

 • Block diagrams

 • Data flow graphs

Deployment

New requirements
New constraints

Development

(What?)

(How?) High-Level: Block Diagrams

Low-Level: Algorithms, Data Structures, 

Interfacing

(Works?)
Validation: Correctness

Performance: Efficiency



Product life Cycle (Cont…)

• Requirement: a specific parameter that the system must satisfy.

(informal description of what customer wants)

• Specifications: detailed parameters describing how the system should

work. (size, weight, position, etc…)

(precise description of what design team should deliver)

• Constraint: a limitation, within which the system must operate. (Cost).

• Safety: The risk to humans or the environment.

• Accuracy: The difference between the expected truth and the actual

parameter.

• Precision: The number of distinguishable measurements. (Quantity)

• Resolution: The smallest change that can be reliably detected. (Quality)

• Response time: The time between a triggering event and the resulting

action.

• Bandwidth: The amount of information processed per time.



Product life Cycle (Cont…)

• Maintainability: The flexibility with which the device can be modified.

• Testability: The ease with which proper operation of the device can be

verified.

• Compatibility: The conformance of the device to existing standards.

• Mean time between failure: The reliability of the device, the life of a

product.

• Size and weight: The physical space required by the system.

• Power: The amount of energy it takes to operate the system.

• Unit cost: The cost required to manufacture one additional product.

• Time-to-prototype: The time required to design, build, and test an example

system.

• Time-to-market: The time required to deliver the product to the customer.

• Human factors: The degree to which our customers like/appreciate the

product.



• Ganssle’s reason #9: Starting coding too soon

• Underestimating the complexity of the needed software is a 
very common risk 

• Writing code locks you in to specific implementations

– Starting too early may paint you into a corner

• Benefits of designing system before coding 

– Get early insight into system’s complexity, allowing more accurate effort 
estimation and scheduling

– Can use design diagrams rather than code to discuss what system should 
do and how. 

– Can use design diagrams in documentation to simplify code 
maintenance and reduce risks of staff turnover

Design Before Coding

*Jack Ganssle in an internationally-recognized embedded systems engineer, author and speaker. See http://www.ganssle.com/articles/jackstoptenlist.htm for more on this.
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• How do we schedule these pieces?

• Consider amount of development risk 

– New MCU?

– Exceptional requirements (throughput, power, safety certification, etc.)

– New product?

– New customer?

– Changing requirements?

• Choose model based on risk

– Low: Can create detailed plan. Big-up-front design, waterfall

– High: Use iterative or Agile development method, spiral. Prototype high-risk 

parts first

Development Models

Architectural 
Design

Detailed 
Design

Coding Test the Code
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• Plan the work, and then work the plan

• BUFD: Big Up-Front Design

• Model implies that we and the 
customers  know
– All of the requirements up front

– All of the interactions between components, etc.

– How long it will take to write the software and 
debug it

Waterfall (Idealized)
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Waterfall (As Implemented)
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Spiral

requirements
design

test

system feasibility

specification

prototype

initial system

enhanced system
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V Model Overview
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• Should contain:

– Introduction with goals and objectives of system

– Description of problem to solve

– Functional description
• provides a “processing narrative” per function

• lists and justifies design constraints

• explains performance requirements

– Behavioral description shows how system reacts to internal or external events and 
situations

• State-based behavior

• General control flow

• General data flow

– Validation criteria 
• tell us how we can decide that a system is acceptable. (Are we done yet?)

• is the foundation for a validation test plan

– Bibliography and Appendix refer to all documents related to project and provide 
supplementary information

1. Requirements Specification and Validation 

Plan

Embedded Systems 



Good requirements

• Correct.

• Clear. Unambiguous.

• Complete.

• Verifiable: is each requirement satisfied in the final system ?

• Consistent: requirements do not contradict each other. 

• Modifiable: can update requirements easily.

• Traceable:

o know why each requirement exists;

o go from source documents to requirements;

o go from requirement to implementation;

o back from implementation to requirement.



Requirements Document

• The main purpose of a requirements document is to serve as an agreement

between you and your clients describing what the system will do. This

agreement can become a legally binding contract.

• Write the document so that it is easy to read and understand by others. It

should be unambiguous, complete, verifiable, and modifiable.

• IEEE templates can be used to define a project (IEEE STD 830-1998).



Requirements Document (Cont…)

1. Overview

1.1. Objectives: Why are we doing this project? What is the purpose?

1.2. Process: How will the project be developed?

1.3. Roles and Responsibilities: Who will do what? Who are the clients?

1.4. Interactions with Existing Systems: How will it fit in?

1.5. Terminology: Define terms used in the document.

1.6. Security: How will intellectual property be managed?

2. Function Description

2.1. Functionality: What will the system do precisely?

2.2. Scope: List the phases and what will be delivered in each phase.

2.3. Prototypes: How will intermediate progress be demonstrated?

2.4. Performance: Define the measures and describe how they will be

determined.
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2.5. Usability: Describe the interfaces. Be quantitative if possible.

2.6. Safety: Explain any safety requirements and how they will be

measured.

3. Deliverables

3.1. Reports: How will the system be described?

3.2. Audits: How will the clients evaluate progress?

3.3. Outcomes: What are the deliverables? How do we know when it is

done?

Requirements Document (Cont…)



Types of requirements

• Functional

o input/output relationships. (what the system needs to do)

• Non-functional:

o Timing.

o Power consumption,

o Manufacturing cost.

o Physical size.

o Time-to-market.

o Reliability. (emergent system behaviors)

• Constraints 

o what limits the design choices



• Architecture defines the structure of the system
– Components

– Externally visible properties of components

– Relationships among components

• Architecture is a representation which lets the designer…
– Analyze the design’s effectiveness in meeting requirements

– Consider alternative architectures early

– Reduce down-stream implementation risks  

• Architecture matters because…
– It’s small and simple enough to fit into a single person’s brain (as opposed to 

comprehending the entire program’s source code) 

– It gives stakeholders a way to describe and therefore discuss the system

2. Architectural (High-Level) Design
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• Describe aspects of how system behaves

– Flow charts for control or data

– State machine diagram

– Event sequences

• Graphical representations very helpful

– Can provide clear, single-page visualization of what system component 

should do

• Unified Modeling Language (UML) 

– Provides many types of diagrams

– Some are useful for embedded system design to describe structure or 

behavior

3. Detailed Design

Embedded Systems 



State Machine

Embedded Systems 

• Moore / Mealy FSM

• States: Circles
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Flowcharts
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Sequence of Interactions between 

Components
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4. Coding and Code Inspections

• Coding driven directly by Detailed Design Specification

• Use a version control system while developing the code

• Follow a coding standard

• Perform code reviews

– Peer Code Review

• IBM removed 82% of bugs

• 80% of the errors detected by HP’s inspections were unlikely to be caught by 

testing

• Test effectively

• Automation

• Regression testing
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5. Software Testing

• Testing IS NOT “the process of verifying the program works correctly”

– The program probably won’t work correctly in all possible cases

• Professional programmers have 1-3 bugs per 100 lines of code after it is “done” 

– Testers shouldn’t try to prove the program works correctly (impossible)

• If you want and expect your program to work, you’ll unconsciously miss failure 

because human beings are inherently biased

• The purpose of testing is to find problems quickly

– Does the software violate the specifications?

– Does the software violate unstated requirements?

• The purpose of finding problems is to fix the ones which matter

– Fix the most important problems, as there isn’t enough time to fix all of them

– The Pareto Principle defines “the vital few, the trivial many”

• Bugs are uneven in frequency – a vital few contribute the majority of the program 

failures. Fix these first.
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5. Software Testing - Approaches to Testing

• Incremental Testing

– Code a function and then test it (module/unit/element testing)

– Then test a few working functions together (integration testing) 

• Continue enlarging the scope of tests as you write new functions

– Incremental testing requires extra code for the test harness

• A driver function calls the function to be tested

• A stub function might be needed to simulate a function called by 
the function under test, and which returns or modifies data.

• The test harness can automate the testing of individual functions 
to detect later bugs

• Big Bang Testing

– Code up all of the functions to create the system

– Test the complete system

• Plug and pray

Embedded Systems 



Tesla Crash

Audi A8

Tesla model s autopilot strikes again in dallas crash

..\AudiA8.mp4

../../Videos/Teslas_Autopilot.mp4
../../Videos/Audi_A8.mp4


V Model Overview

Object Detection . . . 

Image Processing . . 

. 

Transforms … 

Multiplication 
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Assignment no. 3

kindly read the following paper [Software Engineering for Space Exploration].

In short, one paper only ( 2 pages), write an essay mention your opinion

about the topic.

Notes:

• you will deliver your report at lecture time.

• you can work in a group but the group is only two students.

• you may need to read more - paper references or external resources.

• at lecture time, there will be a discussion regarding the topic, be ready

to present the topic and discuss it.

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.298.7111&rep=rep1&type=pdf
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